Selecting Contextually Relevant Focus Alternatives during Comprehension.

Christian Muxica (UCLA – cmuxica@g.ucla.edu) & Jesse Harris (UCLA – jharris@humnet.ucla.edu)

I. Introduction

Focus Alternatives. Successful comprehension of focus requires inferring the relevant set of alternatives. ^[1, 2]

a. [Willie likes only [donuts]_{*F*}] = (1) $like(w,d) \land \forall x \in ALTS.[\neg like(w,x)]$ b. $ALTS = \{ cookies, cupcakes, ... \}$

Two-Stage Model. Supported by cross-modal forced choice-task experiments with probes at different time points. Access to discourse relevant focus alternatives delayed. ^[3, 4, 5]

II. Research question

<u>Unrelated Alternatives</u>. Contextually relevant alternatives are not always semantically related to their associated foci. Previous cross-modal forced-choice task experiments did not test such alternatives.

- a. There are tanks and flowers on the mural. (3)
 - Simon painted only the [flowers]_{*F*}.
 - b. paint(s, f) $\land \forall x \in ALTS.[\neg paint(s, x)]$ $ALTS = \{tank\}$

Alternatives selected anaphorically under Alternative Semantics according to discourse relevance ^[1, 2]

Stage 1: Focus-*Insensitive* Semantic Priming **Stage 2:** Focus-*Sensitive* Alternative Selection

The museum thrilled the SCULPtor ... (2)

Condition	Target	Early	Late
Alternative	PAINTER	Faster RTs	Faster RTs
Associate	STATUE	Faster RTs	_
Control	REGISTER	_	_

Unknown when semantically unrelated, but discourse relevant alternatives are accessed

Question. When do unrelated alternatives become available?

- 1. Delayed-Access (Two-Stage) Model. Available only after a delay from when focus is encountered.
 - ↔ Initial stages are *insensitive* to discourse relevance
 - Alternatives *constrained* from semantic associates
- 2. Immediate-Access (One-Stage) Model. Available immediately after focus is encountered.
 - ↔ Initial stages are *sensitive* to discourse relevance
 - ↔ Alternatives *constructed* from discoure context

III. Materials

IV. Predictions of models (early)

30 Audio Dialogues ► 2 Speakers ► Speaker B ToBI Trained ► Between-Item Probe Order Manipulation

30 Triples Controlled for ► Length ► Frequency > ON size > LSA Cosine-Similarity to Focus^[6]

Speaker A:

Andy used a **muffin** and a **pistol** as props in an independent **movie** that he was directing. **Speaker B:** No, he only used a CAKE.

Condition	Probe
Related	MUFFIN
Unrelated	PISTOL
Control	MOVIE

	Slower RT	Faster RT
Delayed-	Control	Related
Access	Unrelated	
Immediate-	Control	Related
Access		Unrelated

Slower DT

V. Online pilot experiment

47 native English speakers from UCLA scoring over 75% on probe task. Listened to 12 dialogues and responded to probes immediately after focus (0ms SOA). Only correct responses analyzed.

VI. Full in-person experiment

61 native English speakers from UCLA scoring over 75% on probe task and comprehension questions. Listened to 30 dialogues and responded to probes immediately after focus (0ms SOA). Only correct responses analyzed. Pilot data used as informative prior.

-0.96

Pairwise comparisons of conditions Estimated marginal means of model

Summary of results

↔ Online pilot replicated by in-person study ↔ Faster response times observed for alternatives (Related, Unrelated) than nonalternatives (Control)

Related vs. Unrelated	0.003	[-0.012, 0.016]	NA
-----------------------	-------	-----------------	----

Related vs. Unrelated	0.003	[-0.012, 0.016]
I		

>>> Evidence from Bayes Factor that alternatives did not differ from each other

VII. Conclusions and further questions

- Lexical activation immediately following focus reflects more than just semantic priming
- Representations Potentially reflects discourse representations identifying relevant alternatives instead
- Semantic priming in past studies may be independent from alternative generation
- **Delayed-Access model** does not explain the advantage for unrelated alternatives
- Support for an Immediate-Access model more aligned with Alternative Semantics
- Will unrelated alternatives remain highly ac-tivated given a delay?
- Are related non-alternatives as activated as alternatives immediately following focus?
- What discourse representations are involved in identifying alternatives? QUD?
- Are alternatives predicted before focus is en-countered or rapidly retrieved afterwards?
- ➡ Is there any remaining role for semantic priming in selecting alternatives?

References

- Rooth, ME (1985). Association with focus (montague grammar, semantics, only, even). Ph.D. thesis, University of Massachusetts Amherst
- Rooth, M (1992). A theory of focus interpretation. *Natural* 2 Language Semantics, 1, 1:75–116
- [3] Husband, M, & Ferreira, F (2016). The role of selection in the comprehension of focus alternatives. *Language*, Cognition and Neuroscience, 31, 2:217–235
- Gotzner, N, et al. (2016). The impact of focus particles on 4 the recognition and rejection of contrastive alternatives. Language and Cognition, 8:59 – 95
- Gotzner, N, & Spalek, K (2019). The life and times of focus 5 alternatives: Tracing the activation of alternatives to a focused constituent in language comprehension. Language and Linguistics Compass, 13, 2:e12310
- Landauer, TK, & Dumais, ST (1997). A solution to plato's 6 problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psycho*logical review*, 104, 2:211
- **Thanks to Jake Aziz, Neeti Badve, and our amazing RAs!**