

Focus alternatives are available early: No influence from semantic priming or particle choice Christian Muxica (cmuxica@g.ucla.edu) & Jesse Harris (jharris@humnet.ucla.edu) – UCLA Linguistics

Focus Alternatives. To interpret focus, the discourse relevant alternative set must be inferred ^[1]

(1) $ALTS = \{guitar, trumpet, ...\}$

Two Stage Model. Only prior model for selecting alternatives online ^[2,3]

STAGE 1

Discourse-Insensitive Semantic Priming **STAGE 2**

Discourse-Sensitive Alternative Selection

I brought the guitar and the pizza... (2)Jonah only brought the [violin] $_F$ $ALTS = \{guitar, pizza, ...\}$

Condition	Target
Associate Alternative	GUITAR
Non-Associate Alternative	PIZZA
Associate Non-Alternative	MUSIC
Control	HOUSE

Delayed-Access Model.

Initially Discourse-Insensitive

- \hookrightarrow Late-Generation of alternative set
- \hookrightarrow NonAssoc Alts *not available* immediately

Immediate-Access Model.

Initially Discourse-Sensitive

- \hookrightarrow **Early-Generation** of alternative set
- \hookrightarrow NonAssoc Alts *available* immediately

Subquestion. Do different focus particles yield different patterns of availability?

Exhaustive-Advantage.

Alternatives negated under exhaustive focus (*only*) but asserted under additive focus (*also*) \hookrightarrow Exhaustive focus might involve reactivating alternatives to perform negation \hookrightarrow Non-Associate Alternatives *available earlier* under exhaustive focus

30 Audio Dialogues each with 3 probes controlled for length, freq, ON size, and LSA cosine-similarity to focus

Experiment 1 (only).

✓ Focus (β =-0.024, CrI=[-0.028, -0.019], BF>100) × Priming (β =0.002, CrI=[-0.002, 0.006], BF=0.584)

✓ Focus (β =-0.022, CrI=[-0.030, -0.013], BF>100) × Priming (β =0.000, CrI=[-0.006, 0.006], BF=0.315)

VII. Conclusions, references, and acknowledgments

- Evidence against Priming-Dependence and Late-Generation Incompatible with Two-Stage and Delayed-Access Model Support for Immediate-Access Model
- Choice of focus particle choice had little effect
 - Evidence against Exhaustive-Advantage
 - Results driven by contents of the alternative set

[1] Rooth (1992). A Theory of Focus Interpretation. NLS. [2] Husband & Ferreira (2016). The role of selection in the comprehension of focus alternatives. LCN. [3] Gotzner & Spalek (2019). The life and times of focus alternatives. LLC.

C <mark>onditi</mark>	on		Probe	
 Associate Alternative Non-Associate Alternative 		GUITAR PIZZA		
Contr	ol		HOUSE	
GUE		RECOGNITION		
	SOA	DI7		

Experiment 2 (also).

Special thanks to Jake Aziz, Neeti Badve, and the RAs of the Language Processing Lab. And thank you to Thomas Bye, Chuck Clifton, Lyn Frazier, Nicole Gotzner, and Radim Lacina for helpful discussion. 🛧 HSP @ UMich May 16-18 2024